skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Martin, H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Earth's terrestrial surfaces commonly exhibit topographic roughness at the scale of meters to tens of meters. In soil‐ and sediment‐mantled settings topographic roughness may be framed as a competition between roughening and smoothing processes. In many cases, roughening processes may be specific eco‐hydro‐geomorphic events like shrub deaths, tree uprooting, river avulsions, or impact craters. The smoothing processes are all geomorphic processes that operate at smaller scales and tend to drive a diffusive evolution of the surface. In this article, we present a generalized theory that explains topographic roughness as an emergent property of geomorphic systems (semi‐arid plains, forests, alluvial fans, heavily bombarded surfaces) that are periodically shocked by an addition of roughness which subsequently decays due to the action of all small scale, creep‐like processes. We demonstrate theory for the examples listed above, but also illustrate that there is a continuum of topographic forms that the roughening process may take on so that the theory is broadly applicable. Furthermore, we demonstrate how our theory applies to any geomorphic feature that can be described as a pit or mound, pit‐mound couplet, or mound‐pit‐mound complex. 
    more » « less
  2. Meandering rivers experience fluctuations in width whenever riverbanks migrate in different directions or at different rates, which can be observed after individual floods. However, meandering rivers maintain approximately constant widths over decadal timescales. This implies some timescale below which width fluctuates as banks migrate independently, and above which width is maintained by a bank‐coupling process. This coupling is thought to occur either as point bar deposition events induce cutbank erosion (bar‐push), or as cutbank erosion events induce point bar deposition (bank‐pull). This coupling, however, has been challenging to observe in natural rivers due to limited event‐scale field data. We present results from a 4.5‐year campaign with 22 drone‐based lidar surveys of a single point bar and cutbank (∼0.35 km2in area) on the White River near Worthington, Indiana, USA. The middle point bar experienced net erosion (5,400 m3), but net aggradation (17,100 m3) between 2019 and 2022 when including perennially submerged regions. This aggradation was less than the 35,700 m3of cutbank erosion over the same period. Combined, we have observed widening (1.58 m/yr bend‐averaged; 3.08 m/yr near apex) over the study period as point bar deposition has not kept up with cutbank erosion. Finally, we suggest that the difference between bar‐push and bank‐pull as width‐maintenance mechanisms may not be resolvable by observing bend widening or narrowing alone without an advancement of current theory, such as determining a long‐term equilibrium width and measuring deviations relative thereto. 
    more » « less
  3. Aerial imagery is a powerful tool when it comes to analyzing temporal changes in ecosystems and extracting valuable information from the observed scene. It allows us to identify and assess various elements such as objects, structures, textures, waterways, and shadows. To extract meaningful information, multispectral cameras capture data across different wavelength bands of the electromagnetic spectrum. In this study, the collected multispectral aerial images were subjected to principal component analysis (PCA) to identify independent and uncorrelated components or features that extend beyond the visible spectrum captured in standard RGB images. The results demonstrate that these principal components contain unique characteristics specific to certain wavebands, enabling effective object identification and image segmentation. 
    more » « less
  4. Robust spin-photon interfaces in solids are essential components in quantum networking and sensing technologies. Ideally, these interfaces combine a long-lived spin memory, coherent optical transitions, fast and high-fidelity spin manipulation, and straightforward device integration and scaling. The tin-vacancy center (SnV) in diamond is a promising spin-photon interface with desirable optical and spin properties at 1.7 K. However, the SnV spin lacks efficient microwave control, and its spin coherence degrades with higher temperature. In this work, we introduce a new platform that overcomes these challenges—SnV centers in uniformly strained thin diamond membranes. The controlled generation of crystal strain introduces orbital mixing that allows microwave control of the spin state with 99.36(9)% gate fidelity and spin coherence protection beyond a millisecond. Moreover, the presence of crystal strain suppresses temperature-dependent dephasing processes, leading to a considerable improvement of the coherence time up to 223(10) μs at 4 K, a widely accessible temperature in common cryogenic systems. Critically, the coherence of optical transitions is unaffected by the elevated temperature, exhibiting nearly lifetime-limited optical linewidths. Combined with the compatibility of diamond membranes with device integration, the demonstrated platform is an ideal spin-photon interface for future quantum technologies. 
    more » « less
  5. We demonstrate two synthetic single-cell systems that can be used to better understand how the acquisition of an orphan gene can affect complex phenotypes. The Arabidopsis orphan gene,Qua-Quine Starch(QQS) has been identified as a regulator of carbon (C) and nitrogen (N) partitioning across multiple plant species.QQSmodulates this important biotechnological trait by replacing NF-YB (Nuclear Factor Y, subunit B) in its interaction with NF-YC. In this study, we expand on these prior findings by developingChlamydomonas reinhardtiiandSaccharomyces cerevisiaestrains, to refactor the functional interactions between QQS and NF-Y subunits to affect modulations in C and N allocation. Expression ofQQSinC. reinhardtiimodulates C (i.e., starch) and N (i.e., protein) allocation by affecting interactions between NF-YC and NF-YB subunits. Studies inS. cerevisiaerevealed similar functional interactions between QQS and the NF-YC homolog (HAP5), modulating C (i.e., glycogen) and N (i.e., protein) allocation. However, inS. cerevisiaeboth the NF-YA (HAP2) and NF-YB (HAP3) homologs appear to have redundant functions to enable QQS and HAP5 to affect C and N allocation. The genetically tractable systems that developed herein exhibit the plasticity to modulate highly complex phenotypes. 
    more » « less
  6. Abstract Understanding eastern African paleoclimate is critical for contextualizing early human evolution, adaptation, and dispersal, yet Pleistocene climate of this region and its governing mechanisms remain poorly understood due to the lack of long, orbitally-resolved, terrestrial paleoclimate records. Here we present leaf wax hydrogen isotope records of rainfall from paleolake sediment cores from key time windows that resolve long-term trends, variations, and high-latitude effects on tropical African precipitation. Eastern African rainfall was dominantly controlled by variations in low-latitude summer insolation during most of the early and middle Pleistocene, with little evidence that glacial–interglacial cycles impacted rainfall until the late Pleistocene. We observe the influence of high-latitude-driven climate processes emerging from the last interglacial (Marine Isotope Stage 5) to the present, an interval when glacial–interglacial cycles were strong and insolation forcing was weak. Our results demonstrate a variable response of eastern African rainfall to low-latitude insolation forcing and high-latitude-driven climate change, likely related to the relative strengths of these forcings through time and a threshold in monsoon sensitivity. We observe little difference in mean rainfall between the early, middle, and late Pleistocene, which suggests that orbitally-driven climate variations likely played a more significant role than gradual change in the relationship between early humans and their environment. 
    more » « less
  7. null (Ed.)
    The use of cyclostratigraphy to reconstruct the timing of deposition of lacustrine deposits requires sophisticated tuning techniques that can accommodate continuous long-term changes in sedimentation rates. However, most tuning methods use stationary filters that are unable to take into account such long-term variations in accumulation rates. To overcome this problem we present herein a new multiband wavelet age modeling (MUBAWA) technique that is particularly suitable for such situations and demonstrate its use on a 293 m composite core from the Chew Bahir basin, southern Ethiopian rift. In contrast to traditional tuning methods, which use a single, defined bandpass filter, the new method uses an adaptive bandpass filter that adapts to changes in continuous spatial frequency evolution paths in a wavelet power spectrum, within which the wavelength varies considerably along the length of the core due to continuous changes in long-term sedimentation rates. We first applied the MUBAWA technique to a synthetic data set before then using it to establish an age model for the approximately 293 m long composite core from the Chew Bahir basin. For this we used the 2nd principal component of color reflectance values from the sediment, which showed distinct cycles with wavelengths of 10–15 and of ∼40 m that were probably a result of the influence of orbital cycles. We used six independent 40Ar/39Ar ages from volcanic ash layers within the core to determine an approximate spatial frequency range for the orbital signal. Our results demonstrate that the new wavelet-based age modeling technique can significantly increase the accuracy of tuned age models. 
    more » « less